Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.262
Filtrar
1.
Sci Rep ; 14(1): 9440, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658799

RESUMO

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Assuntos
Melaninas , Pteridinas , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , alfa-MSH , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Melaninas/biossíntese , Melaninas/metabolismo , Animais , alfa-MSH/metabolismo , alfa-MSH/farmacologia , Camundongos , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Raios Ultravioleta , Morfolinas/farmacologia , Cromonas/farmacologia , Nitrilas/farmacologia , Butadienos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Melanoma Experimental/metabolismo , 60451
2.
Biomolecules ; 14(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540684

RESUMO

Peptides continue to gain significance in the pharmaceutical arena. Since the unveiling of insulin in 1921, the Food and Drug Administration (FDA) has authorised around 100 peptides for various applications. Peptides, although initially derived from endogenous sources, have evolved beyond their natural origins, exhibiting favourable therapeutic effectiveness. Medicinal chemistry has played a pivotal role in synthesising valuable natural peptide analogues, providing synthetic alternatives with therapeutic potential. Furthermore, key chemical modifications have enhanced the stability of peptides and strengthened their interactions with therapeutic targets. For instance, selective modifications have extended their half-life and lessened the frequency of their administration while maintaining the desired therapeutic action. In this review, I analyse the FDA approval of natural peptides, as well as engineered peptides for diabetes treatment, growth-hormone-releasing hormone (GHRH), cholecystokinin (CCK), adrenocorticotropic hormone (ACTH), and α-melanocyte stimulating hormone (α-MSH) peptide analogues. Attention will be paid to the structure, mode of action, developmental journey, FDA authorisation, and the adverse effects of these peptides.


Assuntos
Hormônio Adrenocorticotrópico , alfa-MSH , Estados Unidos , alfa-MSH/farmacologia , Colecistocinina , Peptídeo 1 Semelhante ao Glucagon , United States Food and Drug Administration , Hormônios Estimuladores de Melanócitos , Fatores de Transcrição
3.
EMBO Rep ; 25(4): 1987-2014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454158

RESUMO

α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.


Assuntos
Remodelação Ventricular , alfa-MSH , Camundongos , Animais , alfa-MSH/farmacologia , Receptores da Corticotropina , Receptores de Melanocortina , Cardiomegalia/genética , Fibrose
4.
Biotechnol J ; 19(3): e2300502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479996

RESUMO

The anti-inflammatory effect of α-melanocyte-stimulating hormone (α-MSH) in the central nervous system (CNS) has been reported for 40 years. However, the short half-life of α-MSH limits its clinical applications. The previous study has shown that a fusion protein comprising protein transduction domain (PTD), human serum albumin (HSA), and α-MSH extends the half-life of α-MSH, but its anti-inflammatory effect is not satisfactory. In this study, optimization of the structures of fusion proteins was attempted by changing the linker peptide between HSA and α-MSH. The optimization resulted in the improvement of various important characteristics, especially the stability and anti-inflammatory bioactivity, which are important features in protein medicines. Compared to the original linker peptide L0, the 5-amino-acid rigid linker peptide L6 (PAPAP) is the best option for further investigation due to its higher expression (increased by 6.27%), improved purification recovery (increased by 60.8%), excellent thermal stability (Tm = 83.5°C) and better inhibition in NF-κB expression (increased by 81.5%). From this study, the significance of the design of linker peptides in the study of structure-activity relationship of fusion proteins was proved.


Assuntos
Albumina Sérica Humana , alfa-MSH , Humanos , alfa-MSH/farmacologia , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia
5.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481807

RESUMO

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Hiperpigmentação , Animais , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Melaninas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Lipopolissacarídeos/toxicidade , Melanócitos/metabolismo , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Linhagem Celular Tumoral
6.
Biomolecules ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397406

RESUMO

Alpha-melanocyte-stimulating hormone (α-MSH) and its binding receptors (the melanocortin receptors) play important roles in maintaining ocular tissue integrity and immune homeostasis. Particularly extensive studies have demonstrated the biological functions of α-MSH in both immunoregulation and cyto-protection. This review summarizes the current knowledge of both the physiological and pathological roles of α-MSH and its receptors in the eye. We focus on recent developments in the biology of α-MSH and the relevant clinical implications in treating ocular diseases.


Assuntos
Melanocortinas , alfa-MSH , Humanos , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Receptores de Melanocortina/metabolismo , Inflamação/tratamento farmacológico , Morte Celular
7.
Mar Drugs ; 22(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38393043

RESUMO

Although melanin protects against ultraviolet radiation, its overproduction causes freckles and senile lentigines. Recently, various biological effects of metabolites derived from marine microorganisms have been highlighted due to their potential for biological and pharmacological applications. In this study, we discovered the anti-melanogenic effect of Bacillus sp. APmarine135 and verified the skin-whitening effect. Fractions of APmarine135 showed the melanin synthesis inhibition effect in B16 melanoma cells, and 2,4,6-triphenyl-1-hexene was identified as an active compound. The melanogenic capacity of 2,4,6-triphenyl-1-hexene (1) was investigated by assessing the intracellular melanin content in B16 cells. Treatment with 5 ppm of 2,4,6-triphenyl-1-hexene (1) for 72 h suppressed the α-melanocyte-stimulating hormone (α-MSH)-induced intracellular melanin increase to the same level as in the untreated control group. Additionally, 2,4,6-triphenyl-1-hexene (1) treatment suppressed the activity of tyrosinase, the rate-limiting enzyme for melanogenesis. Moreover, 2,4,6-triphenyl-1-hexene (1) treatment downregulated tyrosinase, Tyrp-1, and Tyrp-2 expression by inhibiting the microphthalmia-associated transcription factor (MITF). Furthermore, 2,4,6-triphenyl-1-hexene (1) treatment decreased the melanin content in the three-dimensional (3D) human-pigmented epidermis model MelanoDerm and exerted skin-whitening effects. Mechanistically, 2,4,6-triphenyl-1-hexene (1) exerted anti-melanogenic effects by suppressing tyrosinase, Tyrp-1, and Tyrp-2 expression and activities via inhibition of the MITF. Collectively, these findings suggest that 2,4,6-triphenyl-1-hexene (1) is a promising anti-melanogenic agent in the cosmetic industry.


Assuntos
Alcenos , Bacillus , Melaninas , Compostos de Terfenil , Humanos , Monofenol Mono-Oxigenase/metabolismo , Bacillus/metabolismo , Raios Ultravioleta/efeitos adversos , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo , alfa-MSH/farmacologia
8.
Phytomedicine ; 126: 155442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394730

RESUMO

BACKGROUND: The pursuit for safe and efficacious skin-whitening agents has prompted a dedicated exploration of plant-derived compounds. Notably, Tagetes erecta L. flowers have been used as a medicinal extract and possessed in vitro mushroom tyrosinase activity. However, whether polyphenol-enriched fraction extracted from T. erecta L. flowers (TE) regulates melanogenesis within cellular and animal models has not yet been investigated. PURPOSE: This study aimed to investigate the effect of TE as a prospective inhibitor of melanogenesis. METHODS: Through advanced UPLC-QTof/MS analysis, the components of TE were analyzed. Anti-melanogenic effects of TE were evaluated in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells by measuring cell viability assay, extracellular and intracellular melanin biosynthesis, cyclic adenosine monophosphate (cAMP) production, and melanogenesis-related gene and protein expression. Zebrafish larvae were employed for in vivo studies, assessing both heart rate and melanogenesis. Furthermore, molecular docking analyses were employed to predict the interaction between TE components and the melanocortin 1 receptor (MC1R). Direct binding activity of TE components to MC1R was compared with [Nle4, d-Phe7]-MSH (NDP-MSH). RESULTS: TE was found to contain significant phenolic compounds such as patulitrin, quercetagetin, kaempferol, patuletin, and isorhamnetin. This study revealed that TE effectively inhibits melanin biosynthesis in both in vitro and in vivo models. This inhibition was attributed to interference of TE with the cAMP-cAMP response element-binding protein (CREB)-microphthalmia-associated transcription factor (MITF)-tyrosinase pathway, which plays a pivotal role in regulating melanogenesis. Importantly, TE exhibited the remarkable ability to curtail α-MSH-induced melanogenesis in zebrafish larvae without impacting heart rates. Molecular docking analyses predicted that the components of TE possibly interact with the melanocortin 1 receptor, suggesting their role as potential inhibitors of melanin biosynthesis. However, through the direct binding activity compared with NDP-MSH, any TE components did not directly bind to MC1R, suggesting that TE inhibits α-MSH-induced melanogenesis by inhibiting the cAMP-mediated intracellular signaling pathway. The assessment of anti-melanogenic activity, conducted both in vitro and in vivo, revealed that patulitrin and patuletin exhibited significant inhibitory effects on melanin formation, highlighting their potency as major contributors. DISCUSSION: This investigation demonstrated the considerable potential of TE as a natural remedy endowed with remarkable anti-melanogenic properties. The demonstrated capacity of TE to attenuate melanin production by modulating the cAMP-CREB-MITF-tyrosinase pathway underscores its central role in management of disorders associated with excessive pigmentation. Importantly, the implications of these findings extend to the cosmetics industry, where TE emerges as a prospective and valuable ingredient for the formulation of skin-whitening products. The elucidated interactions between TE components and MC1R not only provide insight into a potential mechanism of action but also elevate the significance of this study. In summary, this study not only contributes to our comprehension of pigmentation-related conditions but also firmly establishes TE as a secure and natural strategy for the regulation of melanin production. The innovative aspects of TE propel it into the forefront of potential interventions, marking a noteworthy advancement in the pursuit of effective and safe solutions for pigmentation disorders.


Assuntos
Melanoma Experimental , Tagetes , Animais , Melaninas , Monofenol Mono-Oxigenase/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Peixe-Zebra/metabolismo , Tagetes/metabolismo , 60451 , Polifenóis/farmacologia , Receptor Tipo 1 de Melanocortina/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo
9.
Neuropeptides ; 104: 102410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308948

RESUMO

The immunomodulatory effects of α-melanocyte stimulating hormone (α-MSH) in the central nervous system (CNS) have been investigated for forty years. The clinical applications of α-MSH are limited due to its short half-life. Our previous study has indicated that the short half-life of α-MSH can be extended by fusion with carrier human serum albumin (HSA) and this fusion protein has also retained the anti-inflammatory effect on the CNS. This improvement is still far from the clinical requirements. Thus, we expected to enhance the half-life and activity of the fusion protein by optimizing the linker peptide to get closer to clinical requirements. In a previous study, we screened out two candidates in vitro experiments with a flexible linker peptide (fusion protein with flexible linker peptide, FPFL) and a rigid linker peptide (fusion protein with rigid linker peptide, FPRL), respectively. However, it was not sure whether the anti-inflammatory effects in vitro could be reproduced in vivo. Our results show that FPRL is the best candidate with a longer half-life compared to the traditional flexible linker peptides. Meanwhile, the ability of FPRL to penetrate the blood-brain barrier (BBB) was enhanced, and the inhibition of TNF-α and IL-6 was improved. We also found that the toxicity of FPRL was decreased. All of the results suggested that trying to choose the rigid linker peptide in some fusion proteins may be a potential choice for improving the unsatisfactory characteristics.


Assuntos
Albumina Sérica Humana , alfa-MSH , Animais , Humanos , Camundongos , alfa-MSH/farmacologia , Anti-Inflamatórios/farmacologia , Barreira Hematoencefálica , Fator de Necrose Tumoral alfa
10.
J Ethnopharmacol ; 326: 117933, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38382653

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The roots and rhizomes of Bergenia purpurascens (Hook. f. et Thomson) Engl., was used as a sunscreen to protect against ultraviolet rays in Tibet of China historically, but its skin whitening constituents and pharmacological effects of this plant remained unknown. AIM OF THE STUDY: To investigate the anti-melanogenesis effect of B. purpurascens in vitro and in vivo, and then explore the preliminary mechanism. MATERIALS AND METHODS: An ultraviolet B (UVB)-induced skin injury model of mice was used to verify the ameliorative effect of B. purpurascens extract (BPE) on ultraviolet damage. Then, alpha-melanocyte stimulating hormone (α-MSH)-induced murine melanoma cell line (B16F10) melanin generation model was further adopted to approval the effects of BPE and its bioactive compound, cuscutin, in vitro. Moreover, α-MSH stimulated melanogenesis model in zebrafish was employed to confirm the anti-pigmentation effect of cuscutin. Then, proteins expressions associated with melanin production were observed using western blotting assay to explore preliminary mechanism. RESULTS: BPE inhibited UVB-induced mice injury and restored skin barrier function observably in vivo. BPE and cuscutin suppressed the overproduction of melanin in α-MSH induced B16F10 significantly, in which cuscutin exhibited better effect than well-known whitening agent α-arbutin at same 10 µg/mL concentration. Moreover, the pigmentation of zebrafish embryo was decreased by cuscutin. Finally, cuscutin showed significant downregulation of expressions of tyrosinase (TYR) and tyrosinase related protein-1 (TRP-1), TRP-2 and microphthalmia-associated transcription factor (MITF) in the melanogenic signaling pathway. CONCLUSION: B. purpurascens extract and its major bioactive constituent, cuscutin, showed potent anti-melanogenesis and skin-whitening effect by targeting TYR and TRP-2 proteins for the first time, which supported its traditional use.


Assuntos
Melanoma Experimental , Monofenol Mono-Oxigenase , Animais , Camundongos , Melaninas/metabolismo , Peixe-Zebra , alfa-MSH/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico
11.
Chem Res Toxicol ; 37(2): 274-284, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38271289

RESUMO

Cutaneous pigmentation is an important phenotypic trait whose regulation, despite recent advances, has yet to be completely elucidated. Melanogenesis, a physiological process of melanin production, is imperative for organism survival as it provides protection against the environmental insults that majorly involve sunlight-induced skin photodamage. However, immoderate melanin synthesis can cause pigmentation disorders associated with a psychosocial impact. In this study, the hypopigmentation effect of (2-methylbutyryl)shikonin, a natural product present in the root extract of Lithospermum erythrorhizon, and the underlying mechanisms responsible for the inhibition of melanin synthesis in α-MSH-stimulated B16F10 cells and C57BL/6J mice was studied. Non-cytotoxic concentrations of (2-methylbutyryl)shikonin significantly repressed cellular tyrosinase activity and melanin synthesis in both in vitro and in vivo models (C57BL/6J mice). (2-Methylbutyryl)shikonin remarkably abolished the protein expression of MITF, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2, thereby blocking the production of pigment melanin via modulating the phosphorylation status of MAPK proteins, viz., ERK1/2 and p38. In addition, specific inhibition of ERK1/2 attenuated the inhibitory effects of (2-methylbutyryl)shikonin on melanin synthesis, whereas selective inhibition of p38 augmented the inhibitory effect of BSHK on melanin synthesis. Moreover, topical application of (2-methylbutyryl)shikonin on C57BL/6J mouse tails remarkably induced tail depigmentation. In conclusion, with these findings, we, for the first time, report the hypopigmentation effect of (2-methylbutyryl)shikonin via inhibition of cellular tyrosinase enzyme activity, subsequently ameliorating the melanin production, thereby indicating that (2-methylbutyryl)shikonin is a potential natural therapy for hyperpigmentation disorders.


Assuntos
Hipopigmentação , Melanoma Experimental , Naftoquinonas , Animais , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Regulação para Baixo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/farmacologia , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Transdução de Sinais , 60451 , Melaninas/metabolismo , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Melanoma Experimental/tratamento farmacológico
12.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256168

RESUMO

Malignant melanoma is one of the most aggressive and resistant tumor types, with high metastatic properties. Because of the lack of suitable chemotherapeutic agents for treatment, the 5-year survival rate of melanoma patients with regional and distant metastases is lower than 10%. Targeted tumor therapy that provides several promising results might be a good option for the treatment of malignant melanomas. Our goal was to develop novel melanoma-specific peptide-drug conjugates for targeted tumor therapy. Melanocortin-1-receptor (MC1R) is a cell surface receptor responsible for melanogenesis and it is overexpressed on the surface of melanoma cells, providing a good target. Its native ligand, α-MSH (α-melanocyte-stimulating hormone) peptide, or its derivatives, might be potential homing devices for this purpose. Therefore, we prepared three α-MSH derivative-daunomycin (Dau) conjugates and their in vitro and in vivo antitumor activities were compared. Dau has an autofluorescence property; therefore, it is suitable for preparing conjugates for in vitro (e.g., cellular uptake) and in vivo experiments. Dau was attached to the peptides via a non-cleavable oxime linkage that was applied efficiently in our previous experiments, resulting in conjugates with high tumor growth inhibition activity. The results indicated that the most promising conjugate was the compound in which Dau was connected to the side chain of Lys (Ac-SYSNleEHFRWGK(Dau=Aoa)PV-NH2). The highest cellular uptake by melanoma cells was demonstrated using the compound, with the highest tumor growth inhibition detected both on mouse (38.6% on B16) and human uveal melanoma (55% on OMC-1) cells. The effect of the compound was more pronounced than that of the free drug.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , alfa-MSH/farmacologia , Receptor Tipo 1 de Melanocortina , Agressão
13.
Future Microbiol ; 19: 195-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126934

RESUMO

Aim: In order to search for novel antibacterial therapeutics against Gram-negative bacteria, the antibacterial efficacies and mechanism of action of tryptophan- and arginine-rich α-melanocyte-stimulating hormone analogs were investigated. Materials & methods: We performed a killing assay to determine their efficacy; fluorescence, microscopic studies were used to understand their mechanism and peptide-lipopolysaccharide interaction. A checkerboard assay was used to find the effective combination of peptide and antibiotics. Results: Ana-peptides displayed good killing activity against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Their strong interaction with lipopolysaccharide damaged the bacterial membranes and led to their subsequent death. Ana-5, the highest cationic and hydrophobic analog, emerged as the most potent peptide, showing synergistic action with rifampicin and erythromycin. Conclusion: Ana-5 can be presented as an important therapeutic candidate against bacterial infections.


Bacteria can cause infections. These infections are becoming harder to treat, because excessive use of antibiotics can cause these bacteria to become less susceptible to medicine. In hospitals, these bacteria can cause infections in the lungs, urinary tract, blood, or on the skin. Our bodies make small molecules called antimicrobial peptides (AMPs) to fight against bacteria. AMPs can weaken or quickly destroy bacteria by attaching to their surfaces and breaking them down. Our laboratory has made an AMP called Ana-5. Using Ana-5 with regular medicine is better at killing bacteria. Ana-5 is not only good at fighting these bacteria, but may also help to prevent future infections.


Assuntos
Lipopolissacarídeos , Triptofano , Triptofano/farmacologia , alfa-MSH/farmacologia , Arginina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Escherichia coli , Testes de Sensibilidade Microbiana
14.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003551

RESUMO

The leptin-melanocortin pathway is pivotal in appetite and energy homeostasis. Pathogenic variants in genes involved in this pathway lead to severe early-onset monogenic obesity (MO). The MC4R gene plays a central role in leptin-melanocortin signaling, and heterozygous variants in this gene are the most common cause of MO. A targeted gene panel consisting of 52 obesity-related genes was used to screen for variants associated with obesity. Variants were analyzed and filtered to identify potential disease-causing activity and validated using Sanger sequencing. We identified two novel heterozygous variants, c.253A>G p.Ser85Gly and c.802T>C p.Tyr268His, in the MC4R gene in two unrelated patients with morbid obesity and evaluated the functional impact of these variants. The impact of the variants on the MC4R gene was assessed using in silico prediction tools and molecular dynamics simulation. To further study the pathogenicity of the identified variants, GT1-7 cells were transfected with plasmid DNA encoding either wild-type or mutant MC4R variants. The effects of allelic variations in the MC4R gene on cAMP synthesis, MC4R protein level, and activation of PKA, ERB, and CREB signaling pathways in both stimulated and unstimulated ɑ-MSH paradigms were determined for their functional implications. In silico analysis suggested that the variants destabilized the MC4R structure and affected the overall dynamics of the MC4R protein, possibly leading to intracellular receptor retention. In vitro analysis of the functional impact of these variants showed a significant reduction in cell surface receptor expression and impaired extracellular ligand binding activity, leading to reduced cAMP production. Our analysis shows that the variants do not affect total protein expression; however, they are predicted to affect the post-translational localization of the MC4R protein to the cell surface and impair downstream signaling cascades such as PKA, ERK, and CREB signaling pathways. This finding might help our patients to benefit from the novel therapeutic advances for monogenic forms of obesity.


Assuntos
Leptina , Obesidade Mórbida , Humanos , Leptina/genética , Obesidade Mórbida/genética , Catar , Alelos , alfa-MSH/farmacologia , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Mutação
15.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38035762

RESUMO

Voluntary feed intake is insufficient to meet the nutrient demands associated with late pregnancy in prolific ewes and early lactation in high-yielding dairy cows. Under these conditions, peripheral signals such as growth hormone and ceramides trigger adaptations aimed at preserving metabolic well-being. Recent work in rodents has shown that the central nervous system-melanocortin (CNS-MC) system, consisting of alpha-melanocyte-stimulating hormone (α-MSH) and agouti-related peptide (AGRP) acting respectively as agonist and antagonist on central MC receptors, contributes to the regulation of some of the same adaptations. To assess the effects of the CNC-MC on peripheral adaptations in ruminants, ewes were implanted with an intracerebroventricular cannula in the third ventricle and infused over days with artificial cerebrospinal fluid (aCSF), the α-MSH analog melanotan-I (MTI), or AGRP. Infusion of MTI at 0.03 nmol/h reduced intake, expressed as a fold of maintenance energy requirement (M), from 1.8 to 1.1 M (P < 0.0001), whereas AGRP at 0.3 nmol/h increased intake from 1.8 to 2.0 M (P < 0.01); these doses were used in all subsequent experiments. To assess the effect of MTI on plasma variables, sheep were fed ad libitum and infused with aCSF or MTI or pair-fed to MTI-treated sheep and infused with aCSF (aCSFPF). Feed intake of the MTI and aCSFPF groups was 40% lower than the aCSF group (P < 0.0001). MTI increased plasma triiodothyronine and thyroxine in an intake-independent manner (P < 0.05 or less) but was devoid of effects on plasma glucose, insulin, and cortisol. None of these variables were altered by AGRP infusion in sheep fed at a fixed intake of 1.6 M. To assess the effect of CNS-MC activation on insulin action, ewes were infused with aCSF or MTI over the last 3 d of a 14-d period when energy intake was limited to 0.3 M and studied under basal conditions and during hyperinsulinemic-euglycemic clamps. MTI had no effect on plasma glucose, plasma insulin, or glucose entry rate under basal conditions but blunted the ability of insulin to inhibit endogenous glucose production during hyperinsulinemic-euglycemic clamps (P < 0.0001). Finally, MTI tended to reduce plasma leptin in sheep fed at 0.3 M (P < 0.08), and this effect became significant at 0.6 M (P < 0.05); MTI had no effect on plasma adiponectin irrespective of feeding level. These data suggest a role for the CNC-MC in regulating metabolic efficiency and peripheral insulin action.


Highly productive ruminants face short-term nutritional deficits during demanding phases of their life cycle. They remain productive and healthy during these periods through a series of metabolic adaptations. Current models in ruminant biology attribute the coordination of these adaptations to circulating hormones and bioactive metabolites but have not considered the possibility that the central nervous system (CNS) is also involved. The latter appears likely given recent work in rodents implicating the CNS-melanocortin system in the regulation of some of these adaptations. To test this possibility, mature ewes were surgically implanted with a cannula accessing the brain allowing chronic infusion of melanocortins, and used in experiments assessing peripheral effects. These experiments showed that the CNS-melanocortin system regulates the circulating concentrations of some metabolic hormones as well as the ability of insulin to regulate glucose production. Overall, these studies suggest a role for the CNS-melanocortin system in regulating metabolic adaptations in ruminants.


Assuntos
Melanocortinas , alfa-MSH , Bovinos , Feminino , Ovinos , Animais , Gravidez , Melanocortinas/metabolismo , Melanocortinas/farmacologia , alfa-MSH/farmacologia , Proteína Relacionada com Agouti/farmacologia , Glicemia , Leptina , Insulina , Ingestão de Alimentos
16.
Eur J Pharmacol ; 958: 176008, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37673364

RESUMO

The α-MSH peptide plays a significant role in the regulation of pigmentation via the melanocortin 1 receptor (MC1R). It increases the DNA repair capacity of melanocytes and reduces the incidence of skin cancers. As such, α-MSH analogs could have the utility for protecting against UV-induced skin DNA damage in susceptible patients. Recently, α-MSH analogs have been approved for the treatment of erythropoietic protoporphyria, hypoactive sexual desire, or pediatric obesity. However, the delivery of these drugs requires inconvenient implants or frequent injections. We recently found that select palmitoylated melanocortin analogs such as afamelanotide and adrenocorticotropin peptides self-assemble to form liquid gels in situ. To explore the utility of these novel analogs, we studied their pharmacological characteristics in vitro and in vivo. Acylated afamelanotide (DDE 313) and ACTH1-24 (DDE314) analogs form liquid gels at 6-20% and have a significantly increased viscosity at >2.5% compared to original analogs. Using the DDE313 analog as a prototype, we showed gel-formation reduces the passage of DDE313 through Centricon filters, and subcutaneous injection of analog gel in rats leads to the sustained presence of the peptide in circulation for >12 days. In addition, DDE313 darkened the skin of frogs for >4 weeks, whereas those injected with an equivalent dose of afamelanotide lost the tanning response within a few days. Because self-assembled gels allow sustained activation of melanocortin receptors, further studies of these analogs may allow the development of effective and convenient tanning therapies to prophylactically protect against UV-induced malignant transformation of skin cells in susceptible patients.


Assuntos
Neoplasias Cutâneas , alfa-MSH , Animais , Ratos , alfa-MSH/farmacologia , Géis/farmacologia , Melanócitos , Pele
17.
Z Naturforsch C J Biosci ; 78(11-12): 399-407, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703186

RESUMO

Melanogenesis is the process where skin pigment melanin is produced through tyrosinase activity. Overproduction of melanin causes skin disorders such as freckles, spots, and hyperpigmentation. Myricetin 3-O-galactoside (M3G) is a dietary flavonoid with reported bioactivities. M3G was isolated from Limonium tetragonum and its anti-melanogenic properties were investigated in α-melanocyte stimulating hormone-stimulated B16F10 melanoma cells. The in vitro anti-melanogenic capacity of M3G was confirmed by inhibited tyrosinase and melanin production. M3G-mediated suppression of melanogenic proteins, tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related proteins (TRP)-1 and TRP-2, were confirmed by mRNA and protein levels, analyzed by RT-qPCR and Western blot, respectively. Furthermore, M3G suppressed Wnt signaling through the inhibition of PKA phosphorylation. M3G also suppressed the consequent phosphorylation of CREB and nuclear levels of MITF. Analysis of MAPK activation further revealed that M3G increased the activation of ERK1/2 while p38 and JNK activation remained unaffected. Results showed that M3G suppressed melanogenesis in B16F10 cells by decreasing tyrosinase production and therefore inhibiting melanin formation. A possible action mechanism was the suppression of CREB activation and upregulation of ERK phosphorylation which might cause the decreased nuclear levels of MITF. In conclusion, M3G was suggested to be a potential nutraceutical with anti-melanogenic properties.


Assuntos
Melanoma Experimental , Melanoma , Animais , Monofenol Mono-Oxigenase , Melaninas/metabolismo , Sistema de Sinalização das MAP Quinases , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Flavonoides/farmacologia , Galactosídeos , Melanoma Experimental/metabolismo , Linhagem Celular Tumoral
18.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446194

RESUMO

Without affecting cell viability, epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), theaflavine-3,3'-digallate (TFDG), or theasinensin A (TSA) have been found to effectively reduce intracellular melanin content and tyrosinase (TYR) activity. However, studies on the anti-melanogenic mechanism of the above samples remain weak, and the activities of these samples in regulating melanogenesis at the molecular level lack comparison. Using B16F10 cells with the α-melanocyte-stimulating hormone (α-MSH) stimulation and without the α-MSH stimulation as models, the effects of EGCG, GCG, TFDG, or TSA on cell phenotypes and expression of key targets related to melanogenesis were studied. The results showed that α-MSH always promoted melanogenesis with or without adding the four samples. Meanwhile, the anti-melanogenic activities of the four samples were not affected by whether the α-MSH was added in the medium or not and the added time of the α-MSH. On this basis, the 100 µg/mL EGCG, GCG, TFDG, or TSA did not affect the TYR catalytic activity but inhibited melanin formation partly through downregulating the melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), and the TYR family. The downregulation abilities of catechins on the TYR family and MITF expression were stronger than those of dimers at both the transcription and translation levels, while the ability of dimers to downregulate the MC1R expression was stronger than that of catechins at both the transcription and translation levels to some extent. The results of molecular docking showed that these four samples could stably bind to MC1R protein. Taken together, this study offered molecular mechanisms for the anti-melanogenic activity of the EGCG, GCG, TFDG, and TSA, as potential effective components against the UV-induced tanning reactions, and a key target (MC1R) was identified.


Assuntos
Melaninas , Melanoma Experimental , Animais , Melaninas/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Receptor Tipo 1 de Melanocortina/genética , Monofenol Mono-Oxigenase/metabolismo , Simulação de Acoplamento Molecular , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral
19.
J Cosmet Dermatol ; 22(10): 2824-2830, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37288793

RESUMO

BACKGROUND: Skin pigmentation is modulated by various processes, with melanogenesis playing a key role. Melanin is synthesized by the catalysis of melanogenesis-related enzymes, such as tyrosinase and tyrosine-related proteins TRP-1 and TRP-2. Paeoniflorin is the main bioactive component of Paeonia suffruticosa Andr., Paeonia lactiflora., or Paeonia veitchii Lynch and has been used for centuries for its anti-inflammatory, anti-oxidant, and anti-carcinogenic properties. AIMS & METHODS: In this study, melanin biosynthesis in mouse melanoma (B16F10) cells was induced using α-melanocyte-stimulating hormone (α-MSH), and then cells were co-treated with paeoniflorin to evaluate its potential anti-melanogenic effect. RESULTS: α-MSH stimulation increased melanin content, tyrosinase activity, and melanogenesis-related markers in a dose-dependent manner. However, treatment with paeoniflorin reversed α-MSH-induced upregulation of melanin content and tyrosinase activity. Furthermore, paeoniflorin inhibited cAMP response element-binding protein activation and TRP-1, TRP-2, and microphthalmia-associated transcription factor protein expression in α-MSH-stimulated B16F10 cells. CONCLUSION: Overall, these findings show the potential of paeoniflorin as a depigmenting agent for cosmetic products.


Assuntos
Melaninas , Paeonia , Animais , Camundongos , Monofenol Mono-Oxigenase , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Transdução de Sinais , Antioxidantes/farmacologia
20.
Biol Pharm Bull ; 46(7): 955-963, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37197927

RESUMO

Anticancer drugs exhibit many side effects, including skin pigmentation, which often lowers patient QOL. However, the mechanism of pigmentation caused by anticancer drugs remains unknown. The purpose of this study was to elucidate the mechanism of anticancer drug-induced skin pigmentation using 5-fluorouracil (5-FU), a widely used anticancer drug. Specific pathogen-free, 9-week-old Hos:HRM-2 male mice were intraperitoneally administered 5-FU daily for 8 weeks. Skin pigmentation was observed at the end of the study. Mice treated with 5-FU were also administered inhibitors of cAMP, α-melanocyte-stimulating hormone (α-MSH), and adrenocorticotropic hormone (ACTH) for analysis. Administration of oxidative stress, nuclear factor-kappa B (NF-κB), cAMP, and ACTH inhibitors reduced pigmentation in 5-FU-treated mice. These results indicate that the oxidative stress/NF-κB/ACTH/cAMP/tyrosinase pathway plays an important role in pigmentation in 5-FU-treated mice.


Assuntos
Antineoplásicos , Pigmentação da Pele , Masculino , Animais , Camundongos , Hormônio Adrenocorticotrópico , NF-kappa B/metabolismo , Fluoruracila/efeitos adversos , Qualidade de Vida , alfa-MSH/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...